

Weiyang Liu* Rongmei Lin* Zhen Liu James Rehg Liam Paull Li Xiong Le Song Adrian Weller

Introduction

Empirical Generalization of Neural Networks

How the network is structured.

Motivation I: Over-parameterization

• For example,

How the network is trained.

Recent theories suggest the importance of over-parameterization in linear neural networks.

 $\min_{\mathbf{X} \in \mathbb{R}^{n \times n}} \|observed(\mathbf{X}) - y\|_2^2 \equiv \min_{U, V \in \mathbb{R}^{n \times n}} \|observed(UV^{\mathsf{T}}) - y\|_2^2$

- Gradient descent on f(U, V) finds better global minima.
- Gadient decent on f(U, V) yields minimal nuclear norm solution.

Motivation II: Minimum Hyperspherical Energy (MHE)

Definition of hyperspherical energy:

$$\min_{\{\hat{m{w}}_1,\cdots,\hat{m{w}}_n\in\mathbb{S}^{d-1}\}}ig\{E_s(\hat{m{W}}_n):=\sum_{i=1}^n\sum_{j=1,j
eq i}^nK_s(\hat{m{w}}_i,\hat{m{w}}_j)ig\}$$

where
$$\hat{w}_i := rac{w_i}{\|w_i\|}$$
 $K_s(\hat{w}_i, \hat{w}_j) = \begin{cases}
ho(\hat{w}_i, \hat{w}_j)^{-s}, s > 0 \\ \log(
ho(\hat{w}_i, \hat{w}_j)^{-1}), s = 0 \\ -
ho(\hat{w}_i, \hat{w}_j)^{-s}, s < 0 \end{cases}$

- ρ denotes either Euclidean distance or angular distance on the unit hypersphere.
- Hyperspherical energy characterizes the neuron diversity of the neural network.
- Previous work shows that lower hyperspherical energy leads to better empirical generalization

Orthogonal Over-Parameterized Training

$$R = (I + W)(I - W)^{-1}$$
 $W = -W^{\top}$

$$\min_{\boldsymbol{R}, u_i, \forall i} \sum_{j=1}^m \mathcal{L} \big(y, \sum_{i=1}^n u_i (\boldsymbol{R} \boldsymbol{v}_i)^\top \boldsymbol{x}_j \big) + \beta \| \boldsymbol{R}^\top \boldsymbol{R} - \boldsymbol{I} \|_F^2$$

Ablation and exploratory experiments

Ablation					
Method	FN	LR	CNN-6	CNN-9	
Baseline	-	-	37.59	33.55	
UPT	X	U	48.47	46.72	
UPT	1	U	42.61	39.38	
OPT	X	GS	37.24	32.95	
OPT	1	GS	33.02	31.03	

Results on OPT and Stochastic OPT

Mathad	MNIST		CIFAR-100			
Method	MLP-N	MLP-X	CNN-6	CNN-9	ResNet-20	ResNet-32
Baseline	6.05	2.14	37.59	33.55	31.11	30.16
Orthogonal [7]	5.78	1.93	36.32	33.24	31.06	30.05
SRIP [4]	-	-	34.82	32.72	30.89	29.70
HS-MHE [49]	5.57	1.88	34.97	32.87	30.98	29.76
OPT (GS)	5.11	1.45	33.02	31.03	30.49	29.34
OPT (HR)	5.31	1.60	35.67	32.75	30.73	29.56
OPT (LS)	5.32	1.54	34.48	31.22	30.51	29.42
OPT (CP)	5.14	1.49	33.53	31.28	30.47	29.31
OPT (OGD)	5.38	1.56	33.33	31.47	30.50	29.39
OPT (OR)	5.41	1.78	34.70	32.63	30.66	29.47

S-OPT for plain CNN and ResNet

Mathad	CIFAR-100				ImageNet	
wieniou	CNN-6	Params	Wide CNN-9	Params	ResNet-18	Params
Baseline	37.59	258K	28.03	2.99M	32.95	11.7M
HS-MHE [49]	34.97	258K	25.96	2.99M	32.50	11.7M
OPT (GS)	33.02	1.36M	OOM	16.2M	OOM	46.5M
S-OPT (GS)	33.70	90.9K	25.59	1.04M	32.26	3.39M

Large Categorical Training

Experiments and Results

FN: whether neurons are fixed after initialization LR: whether we enforce orthogonality on R.

CIFAR-100

OPT for MLP, plain CNN and ResNet

• An interesting application is to apply OPT to the classifier layer (as comparison, the other layers are trained normally)

It enables scalable categorical training (many classes)

\rightarrow	
\mathcal{A}	
1	
	CLS-OPT

	ResN	let-18A	ResN	Net-18B
Method	Error	Params	Error	Params
Oracle	18.08	64.0K	12.12	512K
CLS-OPT	21.12	8.13K	12.05	131K
	510	D'	100	4 D'
Method	512	Dim.	1024	4 Dim.
memou	Acc.	Params	Acc.	Params
Oracle	95.7	5.41M	96.4	10.83M
CLS-OPT	94.9	131K	95.8	524K

OPT for PointNet

Mathad		GCN	PointNet
Method	Cora	Pubmed	MN-40
Baseline	81.3	79.0	87.1
OPT (GS)	81.9	79.4	87.23
OPT (CP)	82.0	79.4	87.81
OPT (OGD)	82.3	79.5	87.86

OPT for few-shot learning

Method	5-shot Acc. (%)
MAML [13]	62.71 ± 0.71
MatchingNet [70]	63.48 ± 0.66
ProtoNet [65]	64.24 ± 0.72
Baseline [9]	62.53 ± 0.69
Baseline w/ OPT	63.27 ± 0.68
Baseline++ [9]	66.43 ± 0.63
Baseline++ w/ OPT	$\textbf{66.82} \pm \textbf{0.62}$

Sampling dimension for S-OPT

p =	Error (%)	Params
d	OOM	16.2M
<i>d</i> /4	25.59	1.04M
d/8	28.61	278K
<i>d</i> /16	32.52	88.7K
16	33.03	27.0K
3	45.22	26.0K
0	60.64	25.6K

ImageNet (1K classes)

CASIA-WebFace (10K classes)

2e-2 3.5531 53.89 3e-2 3.6761 N/C

Different initial energy

Mean Energy Error (%)

0 3.5109 32.49

1e-3 3.5117 33.11

1e-2 3.5160 39.51

CIFAR-100