
POSTER TEMPLATE BY:

www.PosterPresentations.com

Orthogonal Over-Parameterized Training
Weiyang Liu*    Rongmei Lin* Zhen Liu    James Rehg    Liam Paull    Li Xiong    Le Song    Adrian Weller

Empirical Generalization of Neural Networks

Introduction

Motivation I: Over-parameterization

• Recent theories suggest the importance of over-parameterization
in linear neural networks.

• For example,

• Gradient descent on f(U,V) finds better global minima.
• Gadient decent on f(U,V) yields minimal nuclear norm solution.

Orthogonal Over-Parameterized Training (OPT)

Experiments and Results

Ablation and exploratory experiments

Results on OPT and Stochastic OPT

Large Categorical Training

How the network is structured. How the network is trained.

Motivation II: Minimum Hyperspherical Energy (MHE)

• Definition of hyperspherical energy:

where

• 𝜌 denotes either Euclidean distance or angular distance on the
unit hypersphere.

• Hyperspherical energy characterizes the neuron diversity of the
neural network.

• Previous work shows that lower hyperspherical energy leads to
better empirical generalization

Goal: A Principled Training Framework for Neural Networks

• Make use of the over-parameterization within each neuron

• Naturally guarantee the minimum hyperspherical energy
• Compatible to different network architectures and optimiziers

• As an illustrative example, we consider a two-layer MLP:

• Note that in OPT, neurons are randomly initialized and then fixed
throughout the entire training. Only the layer-shared orthogonal
matrices are learned.

• If each element of the neuron is initialized with zero-mean
Gaussian, e.g., Xavier/Kaiming initialization, then we have that

• Randonly initialized neurons provably lead to small energy.

• OPT does not change the hyperspherical energy during training.

Orthogonal Matrix Neuron Weight

What OPT learns Randomly initialized and fixed

OPT can provably guarantee the minimum hyperspherical energy.

Ways to guarantee orthogonality

• Unrolling orthogonalization algorithms:

• Orthogonal parameterization:

• Orthogonality-preserving gradient descent

• Orthogonality as a regularization:

Ø Gram-Schmidt Process
Ø Householder reflection
Ø Lowdin’s Symmetric Orthogonalization

Intriguing Insights and Extension

Loss Landscape Comparison

Standard Training OPT Standard Training OPT

Stochastic OPT for Better Scalability

• Approximate a large orthogonal matrix
with many small orthogonal ones.

• Similar to the idea of DropOut.
• Randomly selecting a subset of the

neuron dimensions in each iteration
and perform OPT on this subset.

CIFAR-100

FN: whether neurons are 
fixed after initialization
LR: whether we enforce 
orthogonality on R.

CIFAR-100

Different initial energy

Training dynamics

Ablation

OPT for MLP, plain CNN and ResNet

S-OPT for plain CNN and ResNet Sampling dimension for S-OPT

OPT for few-shot learning

OPT for PointNet

• An interesting application is to apply OPT to the classifier layer
(as comparison, the other layers are trained normally)

• It enables scalable categorical training (many classes)

ImageNet
(1K classes)

CASIA-WebFace 
(10K classes)


